Saturation of Fidelity in the Atom-Optics Kicked Rotor

نویسنده

  • Sandro Wimberger
چکیده

We show that the quantum fidelity is accessible to cold atom experiments for a large class of evolutions in periodical potentials, properly taking into account the experimental initial conditions of the atomic ensemble. We prove analytically that, at the fundamental quantum resonances of the Atom-Optics Kicked Rotor, the fidelity saturates at a constant, time-independent value after a small number of kicks. The latter saturation arises from the bulk of the atomic ensemble, whilst for the resonantly accelerated atoms the fidelity is predicted to decay slowly according to a power law. PACS numbers: 42.50.Vk,03.75.Be,32.80.Qk,05.60.Gg

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Motional stability of the quantum kicked rotor: A fidelity approach

We propose an atom optics experiment to measure the stability of the quantum kicked rotor under perturbations of the Hamiltonian. We avail ourselves of the theory of Loschmidt echoes, i.e., we consider the overlap of a quantum state evolved in a perturbed and an unperturbed potential. Atom interferometry allows us to determine the overlap integral in amplitude and phase. A numerical analysis of...

متن کامل

Observation of saturation of fidelity decay with an atom interferometer.

We use an atom interferometer to investigate the dynamics of matter waves in a periodically pulsed optical standing wave: an atom optics realization of the quantum kicked rotor that exhibits chaotic classical dynamics. We experimentally show that a measure of the coherence between the interferometer diffraction orders can revive after a quick initial loss, and can approach a finite asymptote as...

متن کامل

Atom Interferometry on Atom Chips - A Novel Approach Towards Precision

We have proposed and experimentally demonstrated a new technique for creating spin squeezed states of distant atoms by their common interaction with a driven resonator mode. Using this technique we achieve the largest spin squeezing to date, 5.6dB of improvement in signal-to-noise ratio over the standard quantum limit. We have demonstrated a squeezed atomic clock that reaches a given precision ...

متن کامل

The role of quasi-momentum in the resonant dynamics of the atom–optics kicked rotor

We examine the effect of the initial atomic momentum distribution on the dynamics of the atom–optical realisation of the quantum kicked rotor. The atoms are kicked by a pulsed optical lattice, the periodicity of which implies that quasi–momentum is conserved in the transport problem. We study and compare experimentally and theoretically two resonant limits of the kicked rotor: in the vicinity o...

متن کامل

Quantum transport with cold atoms in time-dependent optical potentials: the role of quasi-momentum in the resonant dynamics of the atom–optics kicked rotor

We examine the effect of the initial atomic momentum distribution on the dynamics of the atom–optical realisation of the quantum kicked rotor. The atoms are kicked by a pulsed optical lattice, the periodicity of which implies that quasi–momentum is conserved in the transport problem. We study and compare experimentally and theoretically two resonant limits of the kicked rotor: in the vicinity o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008